GENETIC VARIATION FOR VOLATILE TERPENOIDS IN ROOTS OF CARROT, DAUCUS CAROTA, INBREDS AND F₁ HYBRIDS

PHILIPP W. SIMON

USDA, ARS, Department of Horticulture, University of Wisconsin, Madison, WI 53706, U.S.A.

(Revised received 6 August 1981)

Key Word Index—Daucus; Umbelliferae; genetics; biosynthesis; terpenoids; volatile oils.

Abstract—Volatile terpenoid levels were determined in eight carrot inbreds and ten F_1 hybrids. Genetic variation between inbreds spanned a 5-10-fold range for both individual terpenes and total volatile terpenoids. Terpinolene, caryophyllene and (E)- γ -bisabolene were the most plentiful terpenes. Dominance for low terpinolene, caryophyllene, and total volatile terpenoids was observed in F_1 hybrids. The (E)- γ -bisabolene quantities varied independently of total volatile terpenoid levels. Genetic trends were clearer for individual compounds when terpene levels were expressed in absolute quantity per unit of root tissue rather than in percentage of total volatile terpenoids.

INTRODUCTION

Buttery et al. initially investigated the terpenoid composition of carrot (Daucus carota var. Imperator) roots[1]. Subsequent reports have recorded volatile terpenoid levels in carrot varieties grown in several environments[2, 3]. Because mono- and sesquiterpenoids have been implicated as factors in flavor[3], herbivore palatability[4], pest resistance[5-7], and insect attraction[7-9], a better understanding of the genetic control of terpenoid formation in carrots is of interest. Such information can also aid in the elucidation of terpenoid biosynthetic pathways in this widely adapted species.

The genetics of terpene biosynthesis has been extensively considered for turpentine constituents in the Coniferae, especially Pinus spp., where simple genetic models can account for variation in α -pinene, β -pinene, 3-carene, α -phellandrene, myrcene, limonene, and camphene [10-17]. The genetics of monoterpenoid synthesis has also been investigated for interspecific hybrids of the Labiatae. In Mentha spp. hybrids, nine genes controlling terpenoid synthesis have been identified [18]. Hedeoma interspecific hybrids display simple genetic control of monoterpene synthesis for 12 compounds [19] and eugenol synthesis is dominant to thymol in Ocimum interspecific hybrids [20]. In addition to these two groups of plants, single genes control oct-1-en-ol and linalol levels in beans [21] and 2-isobutylthiazole, methyl salicylate, and eugenol levels in tomatoes [22].

The enzymes for the isomerization of geraniol to nerol [23] and geranyl phosphate to neryl phosphate, and for the cyclization of neryl pyrophosphate to α -terpineol [24] have been demonstrated in carrots. To gain a better understanding of the genetics and biosynthesis of carrot volatile terpenoids, this report examines terpenoid accumulation in several diverse, unrelated inbred carrot lines and their F_1 hybrids.

RESULTS AND DISCUSSION

The total volatile terpenoids in the carrot lines analyzed spanned a five-fold range, and most individual compounds demonstrated an even greater range over genotypes and environments (Table 1). The relative amounts of individual terpenoids. expressed as a percentage of the total volatile terpenoids, also varied widely. Terpinolene was usually the most abundant volatile terpene, as reported [1-3], but caryophyllene and/or $(E)-\gamma$ -bisabolene were sometimes more plentiful. Some influence of growing location was noted, as demonstrated by B3615 × B6274 grown in Florida, Texas and California, but genetic effects were much larger than location effects. Comparing the two inbreds, $B3615 \times B6274$, listed in Table 1, terpenoid quantities varied greatly, whereas differences in terpenoid percentages were generally much smaller. The hybrid tended to have terpenoid quantities more similar to those of the low-terpenoid parent (B6274) than the high-terpenoid parent (B3615). To draw conclusions from a larger data base, volatile terpenoid levels were determined for three carrot inbreds with high total volatile terpenoid quantities (B493, B3615, and B4367; 1400-2800 units), two with medium quantities (B6439 and F524; 1000-1100 units), three with low quantities (B6274, B9304, and B10138; 600-800 units) and 10 F₁ hybrids (six high × low or reciprocal, two low × medium, one high x medium or reciprocal, one high x high) grown in Florida. Comparisons of total volatile terpenoids (Table 2) and percentages (Table 3) of terpinolene, caryophyllene, and $(E)-\gamma$ -bisabolene are presented.

Inbred carrot lines with more total volatile terpenoids generally had more terpinolene and cary-ophyllene (Table 2). The (E)- γ -bisabolene quantities were not correlated to total terpenoid quantities, with small amounts in both high (B493) and low (B10138) terpenoid inbreds. Reciprocals of the F_1 hybrids

1300 P. W. Simon

Table 1. Volatile terpenoid levels in raw carrot roots

	Inbreds		Hybrids			
	B3615	B6274	B3615 × B6274	B3615 × B6274	B3615 × B6274	-
Compounds Location:	Florida	Florida	Florida	Texas	California	Range†
α-Pinene	0(0)*	0(0)	0(0)	0(0)	0(0)	0-5(0-0.5)
β-Pinene/sabinene	5(0.2)	11(1.3)	2(0.1)	4(0.2)	1(0.1)	0-10(0-1.0)
Myrcene	32(1.1)	25(3.2)	27(2.3)	60(3.4)	60(4.6)	2-83(0.1-6.9)
α-Phellandrene	6(0.2)	2(0.2)	3(0.2)	6(0.3)	2(0.2)	2-33(0.2-3.8)
α-Terpinene	0(0)	0(0)	0(0)	4(0.2)	0(0)	0-46(0-5.4)
Limonene	51(1.8)	19(2.4)	21(1.8)	22(1.2)	16(1.2)	3-77(0.2-5.8)
γ-Terpinene	76(2.7)	16(2.0)	52(4.4)	38(2.1)	23(1.8)	12-237(0.7-15.0)
Terpinolene	1914(68.2)	343(43.7)	700(59.4)	1034(57.9)	712(55.0)	135-1714(19.9-72.0)
Terpinene-4-ol	5(0.2)	0(0)	0(0)	0(0)	0(0)	0-27(0-2.5)
Bornyl acetate	36(1.3)	3(0.3)	6(0.5)	11(0.6)	2(0.2)	0-72(0-10.6)
Caryophyllene	468(16.7)	125(15.9)	125(10.6)	361(20.1)	170(13.1)	66-666(8.0-34.9)
(Z)-γ-Bisabolene	31(1.1)	29(3.7)	18(1.5)	22(1.2)	23(1.8)	0-48(0-2.4)
(E)-γ-Bisabolene	183(6.5)	277(35.3)	225(19.1)	232(12.9)	289(22.3)	14-652(0.7-36.2)
Total	2807(100)	850(100)	1179(100)	1794(100)	1298(100)	497-2824()

^{*}Reported as 1000 × ppm (% total volatiles measured).

 $B3615 \times B10138$, $B3615 \times B9304$, $B4367 \times B6274$ and $B6439 \times B6274$ were analysed and found to be equivalent for all terpenoids (data not presented). Therefore the direction of the hybridization is not specified in Table 2. The lack of reciprocal cross difference indicates that the genetic control of volatile terpenoid biosynthesis is nuclear rather than cytoplasmic.

Terpinolene, caryophyllene, and total terpenoid in the F_1 hybrids were usually equivalent to the low total volatile parent (Table 2). This biogenetic dominance toward the lower quantity parent was also characteristic of α -phellandrene, α -terpinene, limonene. γ -terpinene, terpinene-4-ol, bornyl acetate, and (Z)- γ -bisabolene (data not presented). Even when terpinolene or total terpenoid quantites in the F_1 's were statistically intermediate to both parents, they tended to be closer to the low parent (see quantities for B3615 × B6274 and B4367 × B6274, Table 2).

The trend or biogenetic dominance toward the parent with low quantities of terpenes observed in carrots is similar to observations in Rubus interspecific hybrids [25] for total volatiles, terpenes, linalol, α - and β -ionone, and in tomato hybrids [22] for methyl salicylate and eugenol. Intermediate amounts of 2-isobutylthiazole in tomatoes [22] and linalol in snap beans [21] were measured in F, hybrids of these species. Dominance for high levels of α terpineol and geraniol was noted in hybrids [27], oct-1-en-3-ol in snap bean hybrids [21], and total oils in *Ocimum* interspecific hybrids [20]. Conifer terpenes are generally reported as a percentage of total terpenes rather than per unit plant weight, but genetic analysis of Pinus monticola indicated a dominance for high total terpene levels per unit oleoresin[11].

This is true genetic dominance for low volatile terpenoid levels in carrots and not an anomaly of hybrid vigor since the high×high hybrid (B493×B3615) had quantities comparable to, and not less than, its parents. The conservative gene action of dominance for low mono- and sesquiterpenoid quantities is typical of other biochemical genetic systems including dominance for inhibition of carotene synthesis in carrots [26]. No biosynthetic precursors are known to over-accumulate in carrots having low amounts of volatile terpenoids.

In considering terpenoid percentages rather than quantities in carrot F_1 hybrids, no biogenetic dominance toward the low parent is noted for percent terpinolene and caryophyllene (Table 3). The F_1 hybrid had percentages intermediate to both parents (e.g. terpinolene in $B3615 \times B6274$), below the lower parent (e.g. caryophyllene in $B4367 \times B6274$), or above the higher parent (e.g. caryophyllene in $B6439 \times B6274$). This was also the case for most of the other volatile terpenoids (data not presented). Dominance for intermediate to high (E)- γ -bisabolene percentage was noted in hybrids of B493, B3615, F524, and B9304 (Table 3). Dominance for high percentage pinenes and myrcene has been observed in Pinus [11, 13, 15, 16].

Variation for volatile terpenoid levels is large in carrot roots. This investigation of F_1 hybrids demonstrated a need to consider the quantities of some compounds, e.g. terpinolene and caryophyllene, and the relative percentages of others, e.g. $(E)-\gamma$ -bisabolene. Dominance for low quantities of most carrot volatile terpenoids was evident in the F_1 generation. To determine biosynthetic relationships between volatile terpenoids, genetically segregating generations should be considered.

[†]Range represents results from 17 inbreds or hybrids grown in 1-3 locations.

Table 2. Quantities of major terpenes in the roots of carrot inbreds and their F_1 hybrids grown in Florida

Inbred	Quantity in inbred	Quantity in inbred × 3615 or reciprocal	Quantity in inbred × B6274 or reciprocal
Terpinolene, LSD _{0.05} = 118			
B493	1108*e†	1203 e	802 d
B3615	1914 g	_	700 cd
B4367	1426 f	_	618 c
F524	710 cd		325 b
B6274	343 b	700 cd	
B6439	636 c	712 cd	316 b
B9304	169 a	182 a	_
B10138	350 b	768 d	(316 b)‡
Caryophyllene, LSD _{0.05} = 109			
B493	655 e	590 e	427 d
B3615	468 d	_	125 ab
B4367	300 c	_	83 a
F524	80 a	_	88 a
B6274	125 ab	125 ab	_
B6439	150 ab	220 bc	180 ab
B9304	170 ab	143 ab	
B10138	177 ab	181 ab	(234 bc)‡
(E)-γ-Bisabolene, LSD _{0.05} = 71			
B493	14 a	170 de	137 cd
B3615	183 de		225 ef
B4367	255 f		148 cd
F524	131 cd		136 cd
B6274	222 ef	225 ef	_
B6439	177 de	289 f	168 de
B9304	256 f	320 f	_
B10138	80 abc	100bc	(59 ab)‡
Total volatile terpenoids§, LSD _{0.05} = 191			
B493	1979 e	2162 e	1563 d
B3615	2807 f		1179 bc
B4367	2105 e	-	989 b
F524	1002 b	_	653 a
B6274	785 a	1179 bc	
B6439	1020 b	1294 c	735 a
B9304	707 a	783 a	_
B10138	686 a	1117 bc	(598 a)‡

^{*}Reported as 1000 × ppm.

[†]Mean values followed by the same latter are similar by Duncan's multiple range test, 5% level, for each terpene.

 $[\]ddagger$ Quantities for (B10138 × B493) not (B10138 × B6274).

[§]Sum of all terpenoids listed in Table 1.

1302 P. W. SIMON

Table 3. Percentages of major terpenes in the roots of carrot inbreds and their F₁ hybrids grown in Florida*

Inbred	% In inbred	% In (inbred × B3615) or reciprocal	% In (inbred × B6274) or reciprocal
Terpinolene, LSD _{0.05} = 9.7			
B493	56.0 cd ⁺	55.6 cd	54.5 cd
B3615	67.8 ef		59.4 cde
B4367M	67.7 ef		62.5 def
F524	71.5 f		49.8 bc
B6274	43.7 b	59.4 cde	
B6439	62.3 def	55.0 cd	49.7 bc
B9304	23.9 a	23.2 a	
B10138	51.0 bc	68.8 ef	(52.8 cd)‡
Caryophyllene, $LSD_{0.05} = 7.1$			
B493	33.1 gh	27.3 fg	27.3 fg
B3615	17.2 bcde	-	10.6 ab
B4367	14.3 abc		8.4 a
F524	8.0 a	****	13.5 abc
B6274	15.9 bcd	10.6 ab	
B6439	14.7 abc	17.0 bcd	22.8 def
B9304	24.3 ef	18.3 cde	
B10138	25.5 f	16.2 bcd	(39.1 h)‡
(E)- γ -Bisabolene, LSD _{0.05} = 7.0			
B493	0.7 a	7.9 bc	8.8 bc
B3615	6.5 ab		18.9 de
B4367	12.1 bcd		15.0 cde
F524	12.8 bcd		20.8 e
B6274	28.2 f	18.9 de	
B6439	17.4 de	22.0 ef	18.6 de
B9304	36.2 g	40.9 g	
B10138	11.9 bcd	9.0 bc	(9.9 bc)‡

^{*}Percentage of the summed volatile terpenoids listed in Table 1.

EXPERIMENTAL

Eight inbred carrot (Daucus carota L.) lines from the USDA carrot breeding program (B493, B3615, B4367, B6439, F524, B6274, B9304, and B10138) and 10 F₁ hybrids from these inbreds were grown in commercial carrot fields in Florida, Texas, and California during 1978-1980. These inbred lines have been self-pollinated for 4-8 generations and they represent a broad range of processing and fresh market carrot types. Roots were washed and stored at 5°C until analysis. Collection of carrot root volatiles was made by entraining raw, macerated carrot headspace volatiles over porous polymer (Tenax GC) traps and results obtained by this method were quantitatively precise and were highly correlated with those obtained by distillation [27]. Quantities are reported as 1000 × ppm which is comparable to 30×ppm by distillation[3, 27]. Analyses were performed on a Varian Model 1840-4 GLC with dual FID and 3 m × 2.4 mm stainless steel columns packed with 5% SF-96 and 0.25% Igepal CO-880, He and H₂ flow at 25 ml/min, and injector temp. 190°, O₂ at 250 ml/min, detector temp. 230°, temp. programmed 60-200° at 3.8°/min and held at 200° for 12 min. All compounds reported were adequately

separated with this GC system except β -pinene and sabinene which contributed less than 1% of the total volatiles. Compound identification was determined by cochromatography with pure compounds on SF-96 and Carbowax 20M columns as described [27].

REFERENCES

- Buttery, R. G., Seifert, R. M., Guadagni, D. G., Black, D. R. and Ling, L. C. (1968) J. Agric. Food Chem. 16, 1009.
- Heatherbell, D. A. and Wrolstad, R. E. (1971) J. Food Sci. 36, 225.
- Simon, P. W., Peterson, C. E. and Lindsay, R. C. (1980)
 J. Agric. Food Chem. 28, 559.
- Oh, H. K., Sakai, T., Jones, M. S. and Longhurst, W. M. (1967). Appl. Microbiol. 15, 177.
- MacGregor, J. T., Layton, L. L. and Buttery, R. G. (1974) J. Agric. Food Chem. 22, 777.
- 6. Sturgeon, K. B. (1979) Evolution 33, 803.
- 7. Mabry, T. J. and Gill, J. E. (1979) in Herbivores (Rosen-

[†]Mean values followed by the same letter are similar by Duncan's multiple range test, 5% level, for each terpene.

 $[\]ddagger$ Percentage for (B10138 × B493) not (B10138 × B6274).

- thal, G. A. and Janzen, D. H., eds.) p. 501. Academic Press, New York.
- Flint, H. M., Salter, S. S. and Walter, S. (1979) Environ. Entomol. 8, 1123.
- Guerin, P. M. and Visser, J. H. (1980) Physiol. Entomol. 5, 111.
- 10. Forde, M. B. (1964) N. Z. J. Botany 2, 53.
- 11. Hanover, J. W. (1966) Heredity 21, 73.
- 12. Hanover, J. W. (1966) For. Sci. 12, 447.
- Zavarin, E., Critchfield, W. B. and Snajberg, K. (1969) Can. J. Botany 47, 1443.
- Franklin, E. C. and Snyder, E. B. (1971) For. Sci. 17, 178
- 15. Squillace, A. E. (1971) For. Sci. 17, 381.
- 16. Rockwood, D. L. (1973) For. Sci. 19, 147.
- von Rudloff, E. and Rehfeldt, G. E. (1980) Can. J. Botany 58, 546.
- Hefendehl, F. W. and Murray, M. J. (1976). Lloydia 39, 39.

- Irving, R. S. and Adams, P. R. (1973) in Terpenoids: Structure, Biogenesis, and Distribution (Runeckles, V. C. and Mabry, T. J., eds.) p. 187. Academic Press, New York.
- Sobti, S. N., Khosla, M. K. and Pushpangadan, P. (1978) Indian Perfum. 22, 256.
- Stevens, M. A. and Frazier, W. A. (1967) Proc. Am. Soc. Hortic. Sci. 91, 274.
- 22. Stevens, M. A. (1970) J. Am. Soc. Hortic. Sci. 95, 9.
- Shine, W. E. and Loomis, W. D. (1974) Phytochemistry 13, 2095.
- 24. Croteau, R., Burbott, A. J. and Loomis, W. D. (1973) Biochem. Biophys. Res. Commun. 50, 1006.
- 25. Pyysalo, T. (1976). Lebensm. Unters.-Forsch. 162, 263.
- Buishand, J. G. and Gabelman, W. G. (1979) Euphytica 28, 611.
- Simon, P. W., Lindsay, R. C. and Peterson, C. E. (1980)
 J. Agric. Food Chem. 28, 549.